(i)	(B) Either: All 5 case $\mathrm{P}($ at least one England $)=$ $\begin{aligned} & (0.79 \times 0.20)+(0.79 \times 0.01)+(0.20 \times 0.79)+(0.01 \times 0.79)+ \\ & (0.79 \times 0.79) \\ & =0.158+0.0079+0.158+0.0079+0.6241=0.9559 \end{aligned}$ Or P(at least one England) $=1-\mathrm{P}$ (neither England) $=1-(0.21 \times 0.21)=1-0.0441=0.9559$ or listing all $=1\{(0.2 \times 0.2)+(0.2 \times 0.01)+(0.01 \times 0.20)+(0.01 x$ $0.01)\}$ $=1-(* *)$ $=1-\{0.04+0.002+0.002+0.0001\}$ $=1-0.0441$ $=0.9559$ Or: All 3 case $\mathrm{P}($ at least one England $)=$ $=0.79 \times 0.21+0.21 \times 0.79+0.79^{2}$ $=0.1659+0.1659+0.6241$ $=0.9559$ (C)Either $0.79 \times 0.79+0.79 \times 0.2+0.2 \times 0.79+0.2 \times 0.2=0.9801$ Or $0.99 \times 0.99=0.9801$ Or $\begin{aligned} & 1-\{0.79 \times 0.01+0.2 \times 0.01+0.01 \times 0.79+0.01 \times 0.02+ \\ & \left.0.01^{2}\right\}=1-0.0199 \\ & \quad=0.9801 \end{aligned}$	M1 for multiplying A1cao M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) Or M1 for 0.21×0.21 or for (**) fully enumerated or 0.0441 seen M1dep for 1 - ($1^{\text {st }}$ part) A1cao See above for 3 case M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or M1 for 0.99×0.99 A1cao Or M1 for everything $1-\{\ldots . .\}$ A1cao	2
(ii)	$\left.\left.\begin{array}{l} \text { P(both the rest of the UK \| neither overseas) } \\ \qquad=\frac{\mathrm{P} \text { (the rest of the UK and neither overseas) }}{\mathrm{P}(\text { neither overseas })} \\ \quad=\frac{0.04}{0.9801}=0.0408 \end{array}\right\} \text { \{Watch for: } \frac{\text { answer }(\mathrm{A})}{\operatorname{answer}(\mathrm{C})} \text { as evidence of method }(\mathrm{p}<1)\right\}$	M1 for numerator of 0.04 or 'their answer to (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT $(0<p<1) 0.041$ at least	3

\begin{tabular}{|c|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\text { Probability } \& =1-0.79^{5} \\
\& =1-0.3077 \\
\& =0.6923 \text { (accept awrt 0.69) }
\end{aligned}
\] \\
see additional notes for alternative solution \\
(B) \(1-0.79^{n}>0.9\) \\
EITHER: \\
\(1-0.79^{n}>0.9\) or \(0.79^{n}<0.1\) \\
(condone \(=\) and \(\geq\) throughout) but not reverse inequality
\[
\mathrm{n}>\frac{\log 0.1}{\log 0.79}, \text { so } \mathrm{n}>9.768 \ldots
\] \\
Minimum \(n=10\) Accept \(n \geq 10\) \\
OR (using trial and improvement): \\
Trial with \(0.79^{9}\) or \(0.79^{10}\)
\[
\begin{aligned}
\& 1-0.79^{9}=0.8801(<0.9) \text { or } 0.79^{9}=0.1198(>0.1) \\
\& 1-0.79^{10}=0.9053(>0.9) \text { or } 0.79^{10}=0.09468(<0.1)
\end{aligned}
\] \\
Minimum \(n=10\) Accept \(n \geq 10\) \\
NOTE: \(n=10\) unsupported scores SC1 only
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.79^{5}\) or 0.3077... \\
M1 for \(1-0.79^{5}\) dep \\
A1 CAO \\
M1 for equation/inequality in \(n\) (accept either statement opposite) \\
M1 (indep) for process of using logs i.e. \(\frac{\log a}{\log b}\) \\
A1 CAO \\
M1(indep) for sight of 0.8801 or 0.1198 \\
M1 (indep) for sight of 0.9053 or 0.09468 \\
A1 dep on both M's cao
\(\qquad\)
\end{tabular} \& 3

3 \\
\hline \& \& TOTAL \& 16 \\
\hline
\end{tabular}

$\begin{aligned} & \hline \mathbf{2} \\ & \text { (i) } \end{aligned}$	Probability $=0.3 \times 0.8=0.24$	M1 for 0.8 from (1-0.2) A1	2
(ii)	$\text { Either: } \begin{aligned} \mathrm{P}(A \cup B) & =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & =0.3+0.2-0.3 \times 0.2 \\ & =0.5-0.06=0.44 \end{aligned}$ $\text { Or: } \begin{aligned} \mathrm{P}(A \cup B) & =0.7 \times 0.2+0.3 \times 0.8+0.3 \times 0.2 \\ & =0.14+0.24+0.06=0.44 \end{aligned}$ Or: $\mathrm{P}(A \cup B)=1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$ $=1-0.7 \times 0.8=1-0.56=0.44$	M1 for adding 0.3 and 0.2 M1 for subtraction of (0.3×0.2) A1 cao M1 either of first terms M1 for last term A1 M1 for 0.7×0.8 or 0.56 M1 for complete method as seen A1	3
(iii)	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.06}{0.44}=\frac{6}{44}=0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44 ' in denominator A1 FT (must be valid p)	3
		TOTAL	8

$\mathbf{3}$ (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	$\mathbf{1}$
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	$\mathbf{3}$
(iii)	$0.7^{2}+0.3 \times 0.7^{2}+0.7 \times 0.3 \times 0.7^{2}=0.7399$ or $0.74(0)$ $\{0.49+0.147+0.1029=0.7399\}$	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	$\mathbf{4}$
		TOTAL	$\mathbf{8}$

| 4
 (i) | (A) $\quad \mathrm{P}($ at least one $)=\frac{36}{50}=\frac{18}{25}=0.72$ | B1 aef | |
| :--- | :--- | ---: | :--- | :--- |
| (B) $\quad \mathrm{P}($ exactly one $)=\frac{9+6+5}{50}=\frac{20}{50}=\frac{2}{5}=0.4$ | M1 for $(9+6+5) / 50$
 A1 aef | $\mathbf{3}$ | |
| (ii) | P(not paper \| aluminium) $=\frac{13}{24}$ | M1 for denominator 24
 or $24 / 50$ or 0.48
 A1 CAO | $\mathbf{2}$ |
| (iii) | P(one kitchen waste) $=2 \times \frac{18}{50} \times \frac{32}{49}=\frac{576}{1225}=0.470$ | M1 for both fractions
 M1 for $2 \times$ product of
 both, or sum of 2 pairs
 A1 | $\mathbf{3}$ |
| | | TOTAL | $\mathbf{8}$ |

